skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ploennigs, Joern"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Time series behavior of gas consumption is highly irregular, non-stationary, and volatile due to its dependency on the weather, users' habits and lifestyle. This complicates the modeling and forecasting of gas consumption with most of the existing time series modeling techniques, specifically when missing values and outliers are present. To demonstrate and overcome these problems, we investigate two approaches to model the gas consumption, namely Generalized Additive Models (GAM) and Long Short-Term Memory (LSTM). We perform our evaluations on two building datasets from two different continents. We present each selected feature's influence, the tuning parameters, and the characteristics of the gas consumption on their forecasting abilities. We compare the performances of GAM and LSTM with other state-of-the-art forecasting approaches. We show that LSTM outperforms GAM and other existing approaches, however, GAM provides better interpretable results for building management systems (BMS). 
    more » « less
  2. Commercial buildings have long since been a primary target for applications from a number of areas: from cyber-physical systems to building energy use to improved human interactions in built environments. While technological advances have been made in these areas, such solutions rarely experience widespread adoption due to the lack of a common descriptive schema which would reduce the now-prohibitive cost of porting these applications and systems to different buildings. Recent attempts have sought to address this issue through data standards and metadata schemes, but fail to capture the set of relationships and entities required by real applications. Building upon these works, this paper describes Brick, a uniform schema for representing metadata in buildings. Our schema defines a concrete ontology for sensors, subsystems and relationships among them, which enables portable applications. We demonstrate the completeness and effectiveness of Brick by using it to represent the entire vendor-specific sensor metadata of six diverse buildings across different campuses, comprising 17,700 data points, and running eight complex unmodified applications on these buildings. 
    more » « less